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@ The models we leant before all assume there is a linear relationship between x
and y.

@ e.g. wage and education; wage and experience; Keenland attendance and
temperature; food consumption and income, etc.

@ But really? Do you really believe their relationship can be represented by a straight
line?
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Why Do We Need Nonlinear Model?

@ Theory predicts nonlinear relationship

» Optimal solution.
For example, the “golden rate” saving rate; the optimal hours of study time every week;
the optimal tax rate; etc.

» Changing marginal effect.
For example, the return to education may increase with year of schooling; productivity
and working experience; utility you get from the apple and the number of apple you eat;
etc.
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@ A simple linear regression model,

y=00+pF1x+e
is easy to interpret: if x increases by one unit, we expect y to change by 31,
holding other variables constant.

@ However, sometimes the relationship cannot be represented by a straight line and,
rather, must be captured by an appropriate curve.

@ Since one of the assumptions in Chapter 15 replaces the restriction of linearity on
the parameters, not the x values, we can capture many interesting nonlinear
relationships within this framework.
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The Quadratic Regression Model

@ For example, a firm’s average cost curve tends to be “U-shaped”.

@ Due to economies of scale, average cost initially falls as output increases, before
rising once output reaches a certain threshold.

@ Such a relationship can be estimated by a quadratic regression model:

y:50+51x+52X2+6
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The “Flexible” Quadratic Model

@ For a quadratic regression, we estimate:
Y = Bo+ Bix+ Bex’ +e

@ The sign of 3, determines the shape:

E(y) Ely)

B,<0

B,
N
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@ With quadratic regression model y = 8y + B1x + 82X + ¢,

@ The marginal effect of x on y is 81 + 282x. The marginal effect is NOT a constant,
but a function of x.

@ Predictions with this model are made by y = by + b1 x + box>.

@ When x = —2%‘2, y = {max, min} values. y reaches its maximum (b> < 0) or
minimum (b2 > 0) when the marginal effect =0.
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Example

@ Suppose we want to estimate the relationship between average cost and output.
We gather data for 20 manufacturing firms on output and average cost.

@ When using a scatterplot to display the relationship, notice that a quadratic curve
seems to better fit the data.
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The model is
average cost = [y + Sroutput + Bgoutput2 +e€
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Results

average cost = 10.5225 — .3073output + 0.210output?

@ Is the average cost curve concave or convex? Explain how you know.

@ Find the output that maximizes/minimizes the average cost. (Hint: first order
condition).
—.3073 + 2 x .02100utput =0

output = 7.32

Ding (UKY) Lecutre 10 April 16, 2019 10/27



Prediction

@ What is the change in average cost going from an output level of 4 million units to
5 million units?

AC = 10.5225 — 0.3073 x 4 + 0.0210 x 42 = 9.63
AC = 10.5225 — 0.3073 x 5 + 0.0210 x 52 = 9.51

An increase in output from 4 to 5 million units(one unit increase in x ) results in a
$0.12 decrease in predicted average cost.

@ What is the change in average cost going from an output level of 8 million units to
9 million units? Compare this result to the result found in part 1.

AC = 10.5225 — 0.3073 x 8 + 0.0210 x 82 = 9.41
AC = 10.5225 — 0.3073 x 9 + 0.0210 x 92 = 9.46

An increase in output from 8 to 9 million units(one unit increase in x) results in a
$0.05 increase in predicted average cost.

Depending on the value at which x is evaluated, a one-unit change in x may have
positive or negative influence on y, and the magnitude of this effect is not
constant.
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Higher Order Models

@ The quadratic regression model allows one sign change of the slope capturing the
influence of x on y.

@ Polynomial regression models, more generally, are able to describe various
numbers of sign changes.

@ For example, the cubic regression model allows for two changes to the slope:
Y =Bo+ Bix + BoX* + Bax’ + ¢
The n-th order polynomial regression model is:
Y = Bo+ Bixi + BoXi 4 Baxi 4 ...+ Box{ + ¢

It allows n — 1 signs changes of the slope.
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@ Another commonly used transformation to capture nonlinearities between the
response and the explanatory variables is based on the natural logarithm.

@ Linearity assumes that an increase of one unit in the explanatory variable has the
same impact on the response variable regardless of whether x is increasing from
100 to 101 or 1000 to 1001.

@ That may not be true if, for example, we want to predict how food expenditure
responds to changes in income.
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The Log-Log Model

@ In a log-log model both the response and the explanatory variables are
transformed into natural logs. We can write this model as:

In(y) = ﬂo =+ 51 In(X) + €

@ The relationship between y and x is captured by a curve whose shape depends
on (.

Notice, 31 is the marginal effect. It denote the percentage change of y if x
increases by one percentage.
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The Slope as an Elasticity

@ Inthe model Iny = By + B1Xx + €, we would interpret the slope as the percent
change in y given a 1% increase in x. In other words, 31 is a measure of elasticity.

@ Suppose y represents quantity demanded and x is price. If 31 = —1.2, it would
imply that a 1% increase in price is expected to lead to a 1.2% decrease in its
quantity demanded.
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Prediction

@ Even though we estimate the equation with transformed data, it is relatively easy
to predict in the original units.

@ After the logarithm are computed, the equation is estimated as:
Iny = by + by Inx

@ But § = exp(by + b1 In x) is known to systematically underestimate the expected
value of y, so we correct for that by making predictions using:

¥ = exp(bo + by In x 4 s6°/2)

where se is the standard error of the estimate.
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Example
Refer back to the expenditure example where y is expenditure on food and x
represents income. Let the sample regression be

Iny =3.64+05Inx

with the standard error of the estimate se = 0.18.
@ What is the predicted food expenditure for an individual whose income is $20,000?

@ What is the predicted value if income increases to $21,000?
© Interpret the slope coefficient, by = 0.5.

Ding (UKY) Lecutre 10 April 16, 2019 18/27



@ For the log-log model, § = exp(by + by In x + s€?/2). If income equals 20,000,
j = exp(3.64 + 0.51n 20000 + %18%) — 5475,
@ Ifincome equals 21,000, § = exp(3.64 + 0.51n 21000 + %) = 5610.

© The slope means as x increases by 1%, y increases by 0.5%. As shown in the
first two parts, income increases 5% from 20,000 to 21,000, and expenditure on
food increases by 2.47% from 5475 to 5610, roughly by 2.5%.
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Semi-Log Model

@ Another common application is a “semi-log” model where only one of the variable
is transformed.

@ In a logarithmic model only the x is expressed as a natural log:
Yy=pFo+BiInx+e

y is the original units of measurement. x measurement unit now is the percentage.

B1 is still the marginal effect. 51/100 measures the unit change of y when x increases
by 1 percent.
Prediction model is: ¥ = by + by In x.
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Example

Continuing with the earlier example of food expenditure. Let the estimated logarithmic
regression be:

Food = 12 + 566 In(Income)
@ For an income of $20,000, predicted food expenditure is:

Food = 12 + 5661n(20,000) = 5617

@ The slope by = 566 implies that a 1 percent increase in income leads to an
increase in food expenditures of 566,/100 = 5.66.
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The Exponential Model

@ When the y variable is transformed, but not the x, we have the exponential model:
|ny:,Bo+B1X+€

@ This model allows us to estimate the percent change in y when x increases by
one unit.

@ The sign of 31 again determines the shape.
@ The prediction model is -
Iny = by + b1 x

¥ = exp(bo + b1 x) systematically underestimate the expected value of y. We use
7 = exp(by + by x + s€°/2)

as the prediction model, where se is the standard error of the estimate.
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Example

Suppose we estimate the food expenditure-income relationship using an exponential
model and find that the estimated exponential model is:

In Food = 7.6 + 0.00005Income

where the standard error of the estimate is se = 0.2.
@ An individual with an income of $20,000 is predicted to have food expenditure of:

Food = exp(7.6 + 0.00005 x 20000 + 0.22/2) = 5541

@ The slope coefficient of 0.00005 implies that if income increases by $1, food
expenditure would increase by 0.00005 x 100 = 0.005 percent.
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@ The following table summarizes the simple linear and the logarithmic regression

models:
Model Predicted Value Estimated Slope Coefficient
Yy =080+ Bix+e y=bo+ bix change in § when x 1 by 1 unit
Iny=p80+B1Inx+e §=exp(by+bylnx+se®/2) percentage change in y when x 1 by 1%.
Yy=Bo+pB1Inx+e ¥y =bo+ bylnx %changeinywhenx’rbw%.
Iny =030+ Bix+e § = exp(by + by x + s€®/2) 100b; percentage change in ¥ when x 1 by 1

Although these models involve nonlinear functions of the two variables y and x, they
are linear in B parameters so can be estimated by OLS.
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Compare Linear Models with Models with Logarithms

@ For logarithmic model, we can still compare them with linear models using R°.

@ For log-log model, and exponential model, we cannot compare them with linear
models using R? directly. Because they have different dependent variables.

@ For a valid comparison, we need to compute the percentage of explained
variations of y even through the estimated model use In(y) as the response
variable.

@ The coefficient of determination R? can be computed as R? = y ,» Where ry , is
the sample correlation coefficient between y and j.
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Practice Examples

@ Consider the following models:
@ j=200-12x
Q y=19-350Inx
Q@ ihy=3+.1x,se=.5
Q@ iny=9-4Inx,se="1
Answer the following questions for each:

@ Interpret the slope coefficient for each of the estimated models
@ For each model, what is the predicted unit change in y when x increases by 100 to 101,
or 1%.
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Summary

@ Polinomial regression models
» Functional form
» Graphic representation
» Model estimation and prediction
@ Logarithms regression models
> Log-log model
log-linear model
Linear-log model
Interpretation of coefficients and model predictions.
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